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ABSTRACT

A recently developed SSM/I exponential rain algorithm is evaluated using passive
microwave data from ERICA IOPs 2, 3, 4, and 5. Resulting SSM/I rain analyses were
first compared with aircraft radar and coastal radar data SSM/I rain analyses in IOPs 2,
3, and 4 were then used with GOES enhanced IR imagery to determine ERICA cyclones’
synoptic rain structure.

The SSM/I rain analysis in IOP 5 agreed well with the aircraft radar and coastal
radar observations. Maximum SSM/I rain rate areas coincided with the radar intensity
observations, but SSM/I rain rates were somewhat less than inferred by the radar.

SSM/I rain rate analyses clearly delineate the liquid precipitation patterns within the
IOP 2, 3, and 4 cyclones. The SSM/I rain rate data shows promise to significantly
improve analysis of precipitation over the ocean, where conventional da?a is notably

sparse.
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I. INTRODUCTION

The increasing application of satellite data, especially infrared and visible imagery,
has greatly enhanced analyses and forecasts of various weather phenomena. One
phenomenon that can significantly affect day-to-day air operations is precipitation.
Knowing the location and intensity of the precipitation is critical to aviation interests.
Despite the useful information obtained from satellite imagery, the infrared and visible
radiometers do not directly sense the precipitation. Precipitation estimates from satellite
imagery must be complemented with data analyses from synoptic charts and local
observations. The use of weather radar, ground-based and aircraft, can also be used to
estimate rainfall rate. Numerous empirical studies describe a correlation between a
radar’s reflectivity factor Z and rainfall rate (Battan 1973). However, precipitation
estimates over the vast oceans are uncertain due to inadequate ship and other
observations. Ground-based radar measurements of rainfall rates over the ocean are
limited to coastal areas due to the radar’s effective range of approximately 200 nautical
miles (nm).  Aircraft radar measurements are quite useful but are rarely available for
operational analyses.

One approach to improve oceanic precipitation analysis is the satellite retrieval of
precipitation information from passive microwave radiances (Barrett and Ma-tin 1981).
This method has the fundamental advantage of penetrating clouds and interacting strongly

with precipitation-size drops in liquid phase clouds. Precipitation is therefore directly




detected by the microwave radiation. Most passive microwave data have been made by
the Scanning Multichannel Microwave Radiometer (SMMR) on board the Seasat and
Nimbus-7 satellites and more recently, by the Special Sensor Microwave/Imager (SSM/I)
on the Defense Meteorological Satellite Program (DMSP) satellite. The frequencies used
in the retrieval are 18, 21, and 37 GHz from the SMMR and the 19, 22, 37, and 85.5
GHz from the SSM/IL.

Over the past several years, numerous investigations using the passive microwave
retrieval of precipitation have been conducted. Only a few well-tested, globally
applicable algorithms for the estimation of precipitation over the ocean are available.
These algorithms include the 85.5 GHz polarization corrected temperature (PCT)
algorithm developed by Spencer et al (1989); an algorithm to identify light precipitation
using a 19 GHz-22 GHz vertically polarized channel relationship developed by Norman
C. Grody (Fiore and Grody 1990). and the algorithm implemented by Katsaros et al
(1989) using the 37 GHz horizontally polarized channel to detect precipitation. These
algorithms will be discussed in more detail in the next chapter.

Continued study of rain algorithms over the oceans are critical to improve
precipitation forecasts for these data-sparse areas. However, verification data are required
to demonstrate the effectiveness of the rain algorithms over the ocean. A recent
evaluation of the Hughes Aircraft Corporation (HAC) rain algorithm applied on the
Expeiiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field study data
showed considerable uncertainty in rainfall rate estimation (Cataldo 1990). Large out-of-

limits values were evident when the HAC rain algorithm was applied. Analysis of the




directly measured brightness temperatures demonstrated a better overall detection of
precipitation.

This thesis will evaluate a new exponential rain algorithm on several ERICA storms
in IOPs 2, 3,4, and 5. This algorithm was developed by a University of Wisconsin team
to provide an altenate and improved method to the current Hughes Aircraft Corporation
algorithm (Olson et al 1990). The Wisconsin team applied the alternate algorithm to
tropical cyclone data and the algorithm produced reasonable rainfall rates estimates
comparable to radar data. Studying the ERICA storms with this improved algorithm will
determine the effectiveness of the algorithm when applied to mid-latitude cyclones.

The _RICA field study provides a significant amount of verification data for this
thesis. ERICA was conducted from 1 December 1988 - 26 February 1989. It was
designed to obtain new scientific understanding of the rapid deepening of winter storms
at sea (Hadlock and Kreitzberg 1988). The main objectives of the ERICA program were
to understand the atmospheric processes occurring in rapidly intensifying storms;
determine those processes that must be included into dynamical prediction models; and
identify those measurable precursors needed in an initial analysis for improved operational
model forecasts.

ERICA-type stomms (intensification rate of at least 10 mb/6h for at least 6h)
occurred mainly between 35N - 45N along the path of the Gulf Stream. Historically. this
region is favorable for occurrence of rapidly deepening storms. To collect data for the
ERICA field study, eight Intensive Observations Periods (IOPs) were completed over the

winter storms.  Actual ERICA-type storms were observed in four JOFs (1, 2. 4, and 5)




while two IOPs (3 and 8) had marginal ERICA-type storms. Observations conducted
within the IOPs were accomplished using various types of data gathering systems. These
systems included aircraft radars and dropwinsondes, rawinsonde soundings, satellite
imagery, fixed and drifting buoys, ship report, wind profilers, and ground-based radars.

A literature review of satellite retrieval of precipitation from passive microwave
radiance and precipitation algorithms will be presented in Chapter II. Chapter III will
provide a detailed comparison of the SSM/I exponential algorithm analyses of the ERICA
stonns with aircraft and ground-based radar data. Several exponential rain analyses will
be compared to corresponding GOES infrared (IR) satellite imagery in Chapter IV. A

summary with conclusions and suggestions for future research follow in Chapter V.




II. BACKGROUND
Developing accurate algorithms for precipitation retrieval using passive microwave
radiances continues to be an important area of research. Several algorithms have shown
positive results in detecting the presence and intensity of precipitation. This chapter
describes the basic properties to microwave precipitation retrievals and several recently

developed methods to estimate rainfall rates.

A. MICROWAYVYE PROPERTIES

Passive microwave precipitation retrievals are generally grouped into two different
categories. absorption/emission and scattering. The absorption/emission retrieval, used
below 20 GHz, depends on emission of passive microwave radiation by the liquid
precipitation. The rain drops are observed through these emissions, especially against a
radiometrically cold oceanic background (approximately 150°K) due to its low emissivity
(¢ = 0.4). Microwave brightness temperature, Ty, increases due to microwave emission
from the liquid precipitation in this environment since the emissivity of the precipitation
is near unity. The brightness temperature can be correlated with rainfall rates to produce
rainfall estimation by accounting for the transmittance of a rain layer. As the
transmittance of a layer decreases with the obscuration of the surface,. the emission of rain
dominates the microwave radiance (Kidder and Vonder Harr 1990).

In the scattering-based retrieval, precipitation. especially above freezing level, causes

brightness temperature decreases over a radiometrically warm (usually land) background




(Spencer et al 1989). The T, decreases are caused by the presence of ice in the upper:
levels of the atmosphere. The ice can attenuate upwelling microwave radiation from
below the freezing level by scattering photons out of the spacebomne radiometer’s field
of view (FOV). The microwave radiation measurements above 60 GHz are strongly
influenced by scattering by larger water droplets and ice crystals about 60 GHz. This
method is less direct in estimating precipitation than the absorption/emission-based
retrieval due to scattering rather than emission from rain drops. Between about 20 and
60 GHz, upwelling passive microwave radiation relates to a varying combination of
absorption, emission, and scattering.

Fig. 1 illustrates the different effects water and ice have on upwelling passive
microwave radiation. In Fig. la, dramatic increases in volume scattering occur for both
water and ice with increasing frequencies. However, ice has much lower volume
absorption than water as depicted in Fig. 1b. The low absorption of microwave radiation
by ice leads to high scattering at all SSM/I frequencies (Fig 1c). Therefore, the presence
of ice in the atmosphere and the volume scattering for 85.5 GHz is well correlated with
high precipitation rates.

Calculating microwave brightness temperature as a function of rainfall rates is
determined by using the radiative transfer theory. Figs. 2 and 3 depict the relationship
between brightness temperature and rainfall rates for one set of calculations using the
frequencies near the SSM/I of 18, 37 and 85.6 GHz.

Fig. 2 shows the difference in the brightness temperature-rainfall rate relationships

between land and ocean. There is a rapid increase in Ty at lower rainfall rates due to the
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single scattering albedos (c) for a Marshall-Palmer precipitation size distribution of water
and ice spheres at three frequencies (GHz). [After Spencer et al 1989]




large difference in emissivity between raindrops and the ocean. Note that the 18 and 37
GHz frequencies over the ocean are useful only at the low rain rates (less than 20 mm/h).
Over land, the emissivity of raindrops and the land are almost the same. The plot shows
a decrease in brightness temperature for all three frequencies with increasing rain rates
over land due to absorption and scattering by rain. The 85.6 GHz channel depicts the
sharpest drop in brightness temperature due to the scattering effect of ice prevalent in
higher rainfall rates.

The horizontal and vertical polarizations of the 19 and 37 GHz channels (19H, 19V,
37H. and 37V) depicted in Fig. 3 can also be exploited to detect rainfall rate. Each
polarization channel can be used to estimate precipitation, but utilizing both polarization
curves simultaneously can also provide rainfall estimation. The plot shows the 19 and
37 GHz frequency polarization channels converging for increasing rain rate. This
convergence indicates saturation (surface radiance completely absorbed) is achieved for
that specific frequency. The difference between the horizontal and vertical polarizations
for a particular rain pixel is related to the intensity of precipitation. The basic properties
of passive microwave radiation illustrated above are exploited by several microwave rain

rate algorithms.

B. CURRENT MICROWAVE ALGORITHMS
Several techniques have been developed to utilize the brightness temperature-rainfall
rate relationship to produce estimates of rainfall rates. Spencer et al (1989) describes a

technique for detecting large ice particles in precipitating clouds 1sing a formulated 85.5
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Fig. 2 Brightness temperature versus rain rate for three frequencies. [After Kidder and
Vonder Harr 1990]

GHz polarization corrected temperature (PCT) that responds to volume scattering by these

particles. The 85.5 GHz PCT equation is

PCT = (BTBh - Tav)/(B - (h
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Fig. 3 Mid-latitude ocean brightness temperature versus rain rate at 19 and 37 GHz.
|After Hollinger et al 1987}

where

B = (Tp. - Tpoo)/(Tope - Tono) (2)

Here, Ty, and T, refer to the horizontally and vertically polarized cloudfree ocean T,,.

respectively, while Ty, and T, are horizontally and vertically polarized T, that are at least
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partially affected by any combination of clouds and precipitation. Ty, and Ty, are the
vertically and horizontally polarized Tg, respectively, of the ocean with no overlying
atmosphere. A PCT threshold of 255°K is suggested for the delineation of precipitation.

Fiore and Grody (1990) formulated an empirical relationship between the SSM/I
19V GHz and the 22 GHz vertically polarized (22V) to identify light precipitation. They
separated light precipitation from other scattering materials such as snow cover, sea ice,

and glacial ice by using the empirical formula

Ta(22V) > 38.0 + .88(Tx(19V). 3)

Katsaros et al (1989) used the 37 GHz horizontally polarized channel on the SMMR
to flag the presence of precipitation. They used a threshold value of 190°K (Wilheit and
Chang 1980) as the rain flag. With the help of a water vapor algorithm, they were able
to locate frontal systems over the ocean. Katsaros’ rain flag captured the activity near
the apex between warm and cold fronts and often shows rain ahead of the warm front.
65 cases were analyzed and produced a 91% success rate in marking frontal zones. The
cases that were missed involved weak and complex systems.

The 1irst operational rain algorithm was developed by Hughes Aircraft Corporation
using the assumption that there is a linear relationship between brightness temperature and
rainfall rate. The HAC algorithm, however, failed to fulfill the specified performance
criteria (Hollinger et al 1989). As mentioned earlier. Cataldo (1990) illustrated numerous

problems with the HAC algorithm in the study of oceanic cyclone precipitation. Olson
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et al (1990) derived a replacement linear regression algorithm using statistical regression
of SSM/1 brightness temperatures against considearbly more radar rainfall rate
observations. The linear regression algorithm showed potential in meeting the specified
rain rate criteria. However, these linear algorithms showed a common trend: at low radar-
derivcd rainfall rates, the algorithms tend to overestimate rainfall rate, while at high
rainfall rates, they tend to underestimate rain intensity. A more recent algorithm was
introduced as an alternate technique by the Wisconsin team (Olson et al 1990). They
developed an exponential regression algorithm to account for the nonlinear relationship
between the brightness temperature and rainfall rate. Statistical regression analyses were
first performed on radar data acquired from Darwin, Australia and Kwajalien. These
tropical data were used due to the superior calibration of the radars. Afterwards, simple
exponential regression formulas were produced and applied to mid-latitude rain systems.
The exponential regression application showed generally superior performance over linear
models for mid-latitude systems, although the formulas were based on tropical radar data.
The results from these regression analyses contributed to the development of the
Wisconsin exponential algorithm.

Before applying the exponential algorithm on SSM/I data, a screening logic has to
be satisfied. A negative polarization test is first used to check for bad data. If the
equation (T(37V) - Tg(37TH)) or (Tz(19V) T (19V) - T(19H)) yields values less than -
2°K for a particular pixel in a brightness temperature scene, then the pixel is considered

not usable.

12




After passing the negative polarization test, if the SSM/I brightness scene includes
coastal regions, another empirical function is applied to eliminate false rain signatures

near the coast,

-11.7939 - .02727Tx(37V) + .09920T,(37H) > 0. “)

Different rain algorithms were produced depending on whether the measurement is done
over land or ocean and if the 85.5 GHz channel is usable. The following algorithm is
used to compute rainfall rate over the ocean and both 85.5 GHz channels (85H and 85V)

are usable,

R = EXP(3.06231 - .0056036T,(85V) + .0029478T4(85H)
- 0018119T4(37V) - 00750T4(22V)

+ .0097550Tg(19V)) - 8.0 mm/h. (5)

When the 85.5 GHz channel is not available, the rain algorithm suggested is

R = EXP(5.10196 - .05378T,(37V) + .02766T4(37H)

+ .01373Tx(19V)) - 2.0 mm/h. 6)

If the 85.5 GHz horizontally polarized channel is available but not the 85.5V GHz. the

following algorithm is recommended.




R = EXP(-.42383 -.0082985T4(85H) + .01496T4(19V)

+ .00583T,4(19H)) - 4.0 mm/h. (7)

The rain algorithm with a usable 85.5H GHz channel (Equation 7) will be used in this
thesis on the SSM/I data from the ERICA cases. The 85.5V GHz channel was noisy at
this time and its data could not be used.

Olson et al (1990) validated the altemnate exponential algorithm using SSM/I data
from an overpass of Hurricane Florence on September 10, 1988. Radar-derived rainfall
rates obtained from a Louisiana radar station in proximity of the hurricane were used as
ground truth. The comparison showed good spatial correlation between SSM/I retrieved
rainfall rates and the radar-derived rain rates. Overestimation and underestimation of
rainfall rates occurred in certain areas, but overall the SSM/I rainfall rate estimates were
reasonable compared with the radar. The improved performance of the exponential
algorithm in this tropical case indicates better rainfall rate estimates can be achieved.
Evaluation of the exponential algorithm on several ERICA cyclones will be completed

in this thesis to study its applicability to mid-latitude rain systems.
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III. PRECIPITATION EVALUATION USING RADAR MEASUREMENTS
The use of the meteorological radar is a proven method of remotely sensing
precipitation. Its ability to scan rapidly large areas is a major advantage in estimating
precipitation. Rainfall rates have been correlated with radar returns using empirical
equations which will be discussed later in this chapter. The ERICA data set allows the
comparison of SSM/I precipitation estimates with both aircraft and ground-based radar

data.

A. COMPARISON OF SSM/I ANALYSIS WITH AIRCRAFT RADAR

One of the most important elements in studying the rapidly intensifying cyclones
in the ERICA project was the use of two NOA/ WP-3D aircraft. These aircraft provided
essential flight-level data (temperature, dew point, wind direction and speed) and
dropwinsondes. They also included radar observations from a Doppler radar and a non-
Doppler radar. The Doppler radar was located in the tail end of the aircraft, while the
non-Doppler radar, which recorded only reflectivity , was situated in the belly of the
aircraft (Wakimoto et al 1991). The belly radar will provide the observations for

comparison with the SSM/I rain analysis.

1. OPPORTUNITIES FOR COMPARISON OF SSM/1 AND AIRCRAFT
RADAR DATA

A successful comparison of aircraft radar observations with the SSM/1 rain

analysis depends on the timing of both SSM/I pass and the aircraft’s flight time through

15




the cyclone. The SSM/I coverage (two orbits per day) must be within the aircraft’s radar
recording period. There were three possible flights that could provide radar data during
SSM/I passes for IOPs 2, 3, 4, and 5. Two flights occurred in IOP 4 and the third flight
flew during IOP 5. One of the possible flights (Mission OAO #3, 4/0924 - 4/1739
January 1989) in IOP 4 experienced radar problems. The aircraft’s radar coverage of the
second flight {Mission OAO #2, 4/0021 4/0922 January 1985 . was too far from the rain
area at the time of the SSM/I pass. The third flight, IOP 5 (Mission OAO #1, 19/0445 -

19/1355 January 1989), provided excellent radar observations and now will be compared
with the corresponding SSM/I precipitation analysis.

The P-3 departed on 19/0445 and landed on 19/1355 January 1989. Its overall
flight track is presented on Fig. 4. Fig. 5 illustrates the altitude changes of the flight
(from 19/0845 to 19/1030) with P-3 recorded wind speed every two minutes at the
different levels. The SSM/I pass available during this flight period recorded data starting
at 19/0948 January 1989. SSM/1 data from 19/0951 to 19/0954 covers the aircraft flight
path and this orbit will be now referred to as the 19/0952 January 1989 pass. Fig. S
shows the P-3 flew at an altitude of about 6700 m from [19/0845 to 19/0935. In the
following fifteen minutes, the aircraft descended through the cyclone to an altitude of
about 500 m. It maintained this flight level until around 19/1003 where the aircraft
further descended to an altitude of 300 m. The concurrent SSM/1 pass describes a

significant section of the storm and will now be discussed.
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Fig. 4 Flight Track of P-3 Mission OAO #1 on 19 January 1989. [After Hartnet and
Hadlock 1989]

2. 19/0952 JANUARY 1989 SSM/I RAIN ANALYSIS
The main precipitation region from the IOP 5 cyclone estimated by the SSM/I
is presented in Figs. 6 and 7. Fig. 6 shows the rain analysis using the rain algorithm with
the 85.5H GHz channel available (Equation 6). Fig. 7 is the exponential algorithm that
did not include the 85.5 GHZ channel (Equation 5). The major difference in the two
SSM/ rain analyses are the rain intensities, especially in the maximum rainfalf rate areas.

Without the aid of the 85.5 GHz channel, higher rainfall rates are not analyzed in Fig. 7.
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Fig. 5 Altitude-Wind Plot for P-3 Flight 1 during IOP 5. [After Wakimoto et al 1991]

This is reasonable since ice particles and large rain droplets are more prevalent in higher
rainfall rates and the 85.5 GHz channel is sensitive to these particles. The aircraft radar
can provide confirming evidence on which SSM/I analysis is more realistic.

A segment of the flight track through the storm, from 19/0931 to 19/1020, is
overlayed on the rain analysis in Fig 6. The hash marks correspond to radar observation
times during the flight that will be used for comparison. The main precipitation area on
the 19/0952 rain analysis (Fig. 6) extends south from 4IN 66.5W to 34N 68W and
eastward to 39.5N 625W. A comma head is centered at around 39N 66W with
maximum estimated rainfall rates of 9-10 mm/h. A band of precipitation extends due east

from the comma head with a cell of maximum precipitation intensities of 9-10 mumn/h
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located at 39.4N 63W. South of the comma head a large region of rain extends south to
34N 68W. Maximum rainfall rates in the middle of this large area are estimated to be
greater than 12 mm/h (15 mm/h is the highest rain rate detected). Isolated weaker areas
of precipitation are found north of the comma head and slightly west of the southern large
rain region. The rain areas are nearly identical in the other SSM/I algorithm (Fig. 7), but
the intense rain rate maxima are not resolved.

The precipitation pattern analyzed by the SSM/I exponential algorithm
coincides with the comma cloud system depicted in the 19/1001 enhanced GOES IR
imagery (Fig. 8). The satellite imagery shows a large area of enhanced high clouds
(cloud top temperatures less than 32.2°C) over the cyclone. The high cloud tops are
separated into two regions with a gap at around 40N. The southemn section of these high
clouds covers the comma head and the eastern extension of the SSM/I rain analysis. A
comma tail with warmer cloud tops extends southwest from the main mass of high clouds
and this tail correlates with the precipitation analysis south of the comma head. The
heaviest precipitation terminates at 35.5N in agreement with the southem edge of the
colder cloud tops. Interestingly, the northemn section of the GOES enhanced cloud top
temperature area does not coincide with significant SSM/I rain. No SSM/I precipitation
is analyzed over the ocean north of 41N. There were surface reports of drizzle and light
rain and snow in this area, but no significant precipitation. A large region of low to

middle level clouds cover the Atlantic Ocean east of the cyclone.
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3. AIRCRAFT RADAR

The relationship between precipitation intensity and a radar’s reflectivity factor
Z (Battan 1973) now will be used to interpret aircraft radar. The reflectivity factor Z is
a measure of the strength of a target’s (e.g. precipitation) backscattering efficiency per
unit volume.

As long as the drop-size distribution of the precipitation is known, a
reflectivity/rainfall (Z-R) relationship can be made. Since the drop-size distributions are
difficult to measure, empirical Z-R relationships have been determined. Most

investigators use an empirical expression of the form

Z = AR, (D

where R is the rainfall rate in mm/h; Z is the reflectivity factor with units of mm®m’; and
A and b are empirically determined constants. Fig. 9 is a plot of the Z-R relétionship and
two of the most commonly used Z-R relations are depicted on the plot. Marshall-
Palmer’s equation (1948), Z = 200R'?, is typical for stratiform rain, while Jones’ equation
(1956), Z = 486R'"", characterizes thunderstorm rain.

Since the values for Z vary over several orders of magnitudes for
meteorological observations, Z values are converted to decibels (dB) and expressed as

dBZ. The equation for the Z-dBZ relationship is given as

dBZ = 10 log Z. (2)
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Fig. 8 19/1001 January 1989 GOES Enhanced IR Imagery.
This relationship is important when using radar data since displays of meteorological
radar intensity data are normally contours of dBZ (Hembree 1987). The dBZ contours

then provide the reflectivity factor Z and an estimate of the rainfall rate.

a. P-3 Aircraft Radar Observations
Many radar observations from the P-2 flight during IOP S were processed

and converted into reflectivity (dBZ) images. Five radar scenes will be used to study the
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19/0948 January 1989 SSM/I rain analysis with observation times of 19/0931, 19/0940,
19/0951, 19/1010, and 19/1020. These times corresjond to the flight track hash marks
found in Fig. 6.

An attempt to produce a composite radar picture of the main features of
the cyclone from the five radar images proved difficult. The time difference between
each radar echo pattern allows some intensity and structure changes in the precipitation.
The different field of views due to the large aircraft altitude changes contributes to
measurements of different intensities for the same cells. Delineating actual precipitation

echoes is also difficult due to sea clutter near the aircraft. In light of these difficulties.
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it is felt that a detailed comparison of the five radar observations with the SSM/I rain

analysis offers more information than a radar composite figure.

b. Comparison of Radar Observations with SSM/I Rain Analysis

The five radar observations selected for comparison with the SSM/I
precipitation analysis are within about a half hour of the SSM/I pass. The 19/0931 radar
observation (Fig. 10) describes the extent of the precipitation from an altitude of about
6700 m north of the main precipitation regions. At this flight level, radar returns of less
than 30 dBZ are prevalent in the scene. Three cells of 30 dBZ and greater are located
approximately 150 km southwest (SW), 210 km south-southwest (SSW) and 110 km
southeast (SE) of the aircraft. The locations of the two cells SW and SE of the aircraft
coincide with the positions ¢t the high rainfall rate cells found in the comma head and
the eastward exter .ic » of the SSM/I rain analysis (See Fig. 6). The SSW cell appears
to be related to the high rainfall rate region found in the upper section of the comma tail.

The SW cell has maximum dBZ values of 32.5 that equates to
approximately 5 mm/h on the Marshall-Paimer curve (See Fig. 9). The SSW and SE
cells displays returns of 37.5 dBZ or roughly 8 mm/h. The maximuim intensities for the
corresponding cells on the SSM/I rain analysis are 9-10 mm/h. Since the aircraft is at
6700 m, the radar is sensing only the upper portion of these rain arcas. West-northwest
of the P-3 are weak radar returns of about 20 to 27.5 dBZ indicating rainfall rates of less
than 3 mm/h. This area coincides with the small, isolated region of 2 mm/h rainfall rates
north of the comma head. The weakest reflectivity is found north of the aircraft where

values are generally less 20 dBZ signifying only a few small precipitation cells. The
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southwest. However, the radar rain signature due south of the aircraft are not depicted
by the satellite analysis.

For the 19/0940 radar observation (Fig 11), the P-3 was descending into
the cyclone and the flight level at this time was about 4300 m ( See Fig. 5). This view
is only 11 to 14 minutes prior to the SSM/I pass. As the aircraft descends and travels

nearer to the comma head, larger radar rain rates are observed.

Fig. 11  19/0940 Januarv 1989 Radar Observation of IOP 5 Cyclone.

Three distinct areas of high dBZ values are evident within the large

circular pattem of echoes. By noting the aircraft’s southwest descent into the storm. it




can be seen that these three regions have emerged from the three smaller areas discussed
on the 19/0931 1adar scene. The leading edge of the three areas nearest the aircraft are
estimated to be 90 km away to the west, 80 km to the east and about 110 km to the
south. The distances are approxime' due to incrzasing sea clutter near the aircr..t.

The t cad east cells clearly correlate with the SSM/I rain analysis.
The leading edges of high rainfall rates west and east of the P-3 position are about one
degree longitude (roughly 85 km) from the aircraft. The west cell has maximum dBZ
values of 37.5 dBZ (approxunately 9 mm/h) whereas the SSM/I rain analysis suggests
rates of 9-10 mm/h. Maximum values of 40 dBZ (approximately 11-12 mm/h) are found
in the east cell, while rainfall rates of 9-10 mm/h are analyzed by the satellite algorithm.
The protruding area of weak echoes (less than 30 dBZ) in the northwest quarter of the
radar scene can be reliably related to the small area of light rain north of the comma
head.

About 200 km southwest of the P-3. radar echoes of 30 dBZ have
emerged indicating observations of the comma tail. Cells south of the aircraft agree with
the atrcraft moving through the west-east SSM/I precipitation band. Approximately 110
kn. south of the aircraft is a large area of radar echoes with maximum values of 40 dBZ.
Only the extreme western portion of the above-mentioned radar echo area can be
correlated with SSM/I rain analvsis where rainfall rates of 5-6 mm/ are detected. The
echoes south of the aircraft do not match the SSM/I rain rate figure.

By 19,0951, the P-3 is flving at an altitude of 900 m near the comma

head. Large sea clutter return is evident in this radar observation (Fig. 12y Due to the




sea clutter, defining the edges of maximum radar intensities near the aircraft is
impossible. Howzver, the radar shows an area to the west with maximum intensity of 40
dBZ (approximately 12 mm/h). This echo area corresponds to maximum SSM/I rain rate
region in the comma head. Examining the next two radar scenes will better define this
region.

The general structure of the other precipitation patterns on the radar image
strongly follow the SSM/I rain analysis. The extension of radar echoes to the east
continues to about 280 km and parallels the west-east band on the SSM/I rain analysis.
In the northwest quadrant, the weak rain cells are still present. South-southwest of the
radar center, a region of maximum dBZ values (35 to 37.5 dBZ) is depicted. The leading
edge of this region is about 100 km from the aircraft. The SSM/I exponential algorithm
captures this precipitation area !~cated in the northern section of the comma tail where
rain rates reach as high as 11-12 mm/h. With the continuing westward movement of the
P-3, the radar rain areas obs: ved due south of the aircraft on the two previous radar
scenes should be located approximately 110 km southeast of the P-3. However, the
19/0951 radar observation does not show any precipitation in this area. The
disappearance of this rain area cannot be fully resolved at this time and must be
investigated further.

The last two radar observations (Figs. 13 and 14) observe the two westem
high precipitation areas. Both scenes show a circular area of sea clutter since the aircraft
is close to the sea surface at these times. The two views reveal two separate regions of

maximum radar intensities located north-northeast (NNE) and southeast (SE) of the
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ig. 12 19/0951 January 1989 Radar Observation of IOP 5 Cyclone.
aircraft position. The NNE sector changes in shape between the two views but they both
indicate maximum dBZ values of 40 dBZ (approximately 11-12 mm/h).

The SE sector has similar maximum radar intensities (40 dBZ) as the
NXNE sector with estimated rainfall rates of 12 mm/h. Taking into account the position
of the aircraft and the movement of the cvclone, this sector is related to the northem
portion of the comma tail of the SSM/ rain analysis where maximum rainfall rates are

11-12 mm/h This sector becomes more distinct from the sea clutter in the 19,1020 scene

as the aircraft moves westward
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Fig. 13 19/1010 January 1989 Radar Observation of IOP 5 Cyclone.

c. Comparison Summary
The rain/no rain structure of the SSM/1 analysis correlates extremely well
with the aircraft radar data. Leading edges of maximum rainfall rates from both
precipitation patterns are found to be in close agreement. The SSM/I rain rates in these
maximum rain areas are strongly correlated to the aircraft radar. The SSM/I analysis for
thec comma head detected maximum rainfall rates of 9-10 mm/h while the radar
reflectivity patterns determined the rainfall rates to be approximately 12 mm/h. The other

analvzed maximum rain areas are within 2 mm/h of the radar intensity observations,
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Fig. 14 19/1020 January 1989 Radar Observation of 10P 5 Cycloc.
Even the weak precipitation area projecting north-northwest of the comma head was
observed.

There was disagreement between two radar observations (19/0921 and
19/004-+ January 1989) and the southemn region of the SSM/1 rain analysis. The 19/093]
and 190040 radar observations showed a rain area due south of the aircraft not directly
hinked to SSM/T rain analyvsi<. However, this rain area did not appear on the next radar
observation (19/095] ranuary 1089y where the P-2 descended from 4200 m 1o 600 m

Additiona! study is needed to explain the disappearance of the rain area between [9/0040
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and 19/0951 January 1989. With exception of the above area, the aircraft radar-SSM/I
rain rate comparison was very successful.
B. COMPARISON OF SSM/1 ANALYSIS WITH RADAR SUMMARY

CHARTS

The majority of the cyclones in the ERICA field study developed along the eastem
U.S. coast. The proximity of the developing cyclones to the coast allow ground-based
radar coverage of the storms during the early development periods. Although the
operational radar data are analog, radar reports are encoded in digital format using six
levels of radar reflectivity, processed by computer at NMC, and converted to facsimile
charts. An hourly facsimile chart produced at the National Meteorological Center (NMC),
called the Automated Radar Summary (ARS) Chart, provides an analysis of precipitation
extent over the United States and coastal waters.

The presence of precipitation s described on the radar summary chart as shaded
areas. Six levels of rain intensity are prepared in Table 1 (Sadowski 1979). Contours for
echo intensity levels 1, 3, 5 are used on the radar summary charts to distinguish the
various levels of precipitation activity. Level 1 indicates rainfall rates of 1 to 3 mm/h,
intensities greater than 13 mm/h are contoured as level 3; and level 5 depicts rainfall rates
above 114 mm/h. If a level 1 contour is drawn without a level 3 or 5 present within the
contour, the precipitation intensity can be either level 1 or 2. These digitized radar data
have horizontal resolutions of 20 x 20 nm. The radar summary charts must be used

carefully since the coarse resolution of the data will indicate more precipitation than
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observed. The raw digital values were not available for analysis. These radar summary
charts will be compared with relevant SSM/I passes in IOPs 2 and 4.

Tablel AUTOMATED RADAR SUMMARY PRECIPITATION LEVELS AND
THEIR RESPECTIVE RAINFALL RATES. [After Sadowski 1979]

Level of Precipitation Rainfall Rates (mm/h)
1 1-3
2 3-13
3 13-25
4 56 -114
5 114 - 180
6 > 180

1. OPPORTUNITIES FOR COMPARISON
There are four SSM/I precipitation analyses from IOPs 2 and 4 in the coastal
zone that can be evaluated with the radar summary charts. One SSM/I pass is from IOP
4 (3/2333 January 1989) and three passes are from IOP 2 (12/2303, 13/0904, and 13/2258
December 1988). The ground-based radar reports on the ARS charts are  nited to
approximately 220 kilometers (km) i Hembree 1987) which is the effective range of most
radars. Thus, the ARS charts can only be used for comparison when precipitation is

present within two degrees latitude from the coast.
2.  SSM/1 RAINFALL RATE ANALYSIS AND RADAR SUMMARY

a. SSM/I Data for 3/2333 January 1989
The 3/2333 SSM/I precipitation analysis, Fig. 15. shows ane .cnsive area

of precipitation off the eastem U.S. coast between 31N and 37N. The rain analvsis
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presents a comma-shape feature stretching from North Carolina to Georgia. A one degree
sector of missing data is present along 30N-31N. This precipitation area was associated
with the development of the intense IOP 4 cyclone. The northern section of the area at
around 36N extends inland, while the central section is about one degree away from the
coast. The southern section shows the precipitation extending towards the coast.

The SSM/I analysis reveals four distinct cells of high rainfall rates within
the precipitation region. One cell is centered at 35N 73.5W and has maximum rainfall
rates of 9-10 mm/h. About 36N 73W, an elongated cell is analyzed with maximum
intensities of 7-8 mm/h. The other two cells are located in the lower section of the
precipitation region along 33N. The two cells parallel each other in northeast-southwest
orientation. Both have maximum rainfall rates of 7-8 mm/h positioned in the center of

the individual cells.

b. Radar Summary Chart for 3/2335 January 1989

A comma-shape pattem of precipitation is also depicted on the 3/2335
radar summary chart (Fig. 16) that is nearly the same time as the SSM/1 pass. The
precipitation extends from 41N to around 31N that includes snow and snow showers in
the northernmost part of the region. Available surface observations at 3/2300 and 4/0000
indicate the snow and snow showers occurred north of 38N with predominantly rain and
rain showers in the rest of the precipitation area. Isolated thundershowers are found along
the tail end of the comma-shape pattern.

The general rain/no rain structure of the SSM/I precipitation analvsis

corresponds very well with the radar summary chart. The comma-shape pattern is evident
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Fig. 16 3/2335 January 1989 Radar Summary Chart. [Drawn from 3/2335 January 1989
ARS chart }

on both the SSM/1 analysis and radar summary. The small area of no precipitation off
the coast of South Carolina and North Carolina is correctly analyzed.
Contour levels indicate the majority of the precipitation is less than 13

mm/h. Several cells are depicted as having rainfall rates greater than 13 mum/h. The cell
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at 35N 73.5W with maximum rainfall rates of 9-10 mm/h matches the cell on the ARS
chant that displays a level 3 intensity. The elongated cell at 36N 73W with intensities
of 7-8 mm/h is near another ARS cell depicted as level 3. The exponential algorithm
is underestimating the intensities in these two cells but the algorithm is able to identify
those regions where the rainfall rates are higher than the surrounding precipitation areas.
An ARS level 5 contour can be seen over southeastern Georgia showing intense
convective activity with rainfall rates as high as 180 mm/h. The strong cell of
thundershowers over southeastern Georgia cannot be verified since the exponential
algorithm is for oceanic precipitation. An SSM/I land algorithm would be needed to
analyze this area. The precipitation analysis did not reveal the snow showers present on
the radar summary north of 38N due to the SSM/I being less sensitive to snow versus

liquid water.

¢. SSM/I Data for 12/2303 December 1988

Fig. 17 presents the exponential algorithm precipitation analysis for the
12/2304 December 1988 SSM/I pass. A large, irregular-shaped area of precipitation is
analyzed off the South Carolina-Georgia coast extending out to 71W. The region is
associated with the first cyclone center of IOP 2. The northem tip of this area reaches
to 34N. A line of isolated cells stretches from 28N 67W to the southem tip of Florida.
A one degree band of missing data is located near 27N from one edge of the pass to the
other. The band of missing data cuts across the lower portion of the main body of

precipitation. The large area of precipitation shows maximum intensities of 5-6 mm/h




near the center. Cells near southem Florida and Cuba shows maximum rainfall rates of
9-10 mm/h.

d. Radar Summary Charts for 12/2135 and 13/0135 December 1988
The ARS charts closest to the 12/2303 SSM/I pass were not available, but
the 12/2135 and 13/0135 radar summary charts (Figs. 18 and 19) that bracket the time of
the pass will be used for comparison. The 12/2135 radar summary shows a hook-shaped
area over Georgia and along the South Carolina-North Carolina coast. The rainfall rates
in this area are less than 13 mm/h. A smaller area of rain and rain showers is located off
the eastern coast of Florida. An isolated cell near the center of this area indicate
intensities of level 3. These two areas appear to have merged on the 13/0135 radar
summary charts. A long region of precipitation stretches from North Carolina down to
Florida. Most of the precipit;tion is rain with snow found near the coast in the northem
part of the region. The rainfall rates throughout this stretch are less than 13 mm/h.
The SSM/I rain analysis off the coast of South Carolina and North
Carolina correlates well with the two radar summary charts. Intensities of 1 to 6 mm/h
are reasonable compared to the rainfall rates recorded on the radar summary charts. The
precipitation analysis does not extend into South Carolina and North Carolina, but surface
observations at 12/2300 indicate snow and snow showers along the Carolina coast. No
SSM/I precipitation analyzed suggest this area may have snow or snow showers in the
vicinity as reported on the ARS charts.
Cells near the southem tip of Florida are reported on both radar summary

charts. The 12/2135 radar summary shows a single cell that has contour level of 3
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Fig. 18 12/2135 December 1988 Radar Summary Chart. [Drawn from 12/2135
December 1988 ARS chart.]

level 3 near the center. The 12/2303 SSM/I rain analysis analyzes these convective cells
in this area. The maximum intensities analyzed in these cells are slightly lower, but the

analysis is able to detect the higher rainfall rates.
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Fig. 19
December 1988 ARS chart.]

e. Comparison Summary.
The SSM/I rain analyses showed general agreement with the radar rain
coverage found on corresponding radar summary charts. Outer boundaries of rain areas
contoured by the charts are well described by the exponential algorithm. Maximum

rainfall rate areas also coincide well with the higher contour levels of precipitation
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activity. The rain intensities in the SSM/I maximum rain regions tend to be less than
those found in the radar summary charts. Areas in the radar summary charts showing
light snow or snow showers are not detected by the microwave data.

Two additional SSM/I rain analyses in IOP 2, 13/0904 and 13/2258
December 1988 (not shown), were also compared with radar summary charts. The
13/0904 SSM/I rain analysis observed the rain pattern of the first developing cyclone
center. The cyclone’s main precipitation area is too far for coastal radar coverage, but
a narrow band of light rain was located approximately one degree longitude from the
North Carolina coast. The corresponding radar summary chart verified the presence of this
rain band.

The second cyclone center that developed in IOP 2 is the major rain
feature on the 13/2258 SSM/I rain analysis. Again, the primary rain area occurs in the
comma head region. but is beyond radar coverage. However, a rain band north of the
comma head region extends toward the Connecticut-Massachusetts coast. This rain area
correlates well with the radar summary chart except north of 42N where snow was
observed. The SSM/I and radar rain intensities were also comparable. The main
difference in the two additional cases was the SSM/I precipitation extent covered a

smaller area than depicted on the radar summary charts.




IV. SSM/I RAIN ANALYSIS - IR SATELLITE IMAGERY COMPARISON

Extensive research has been completed estimating precipitation using IR and visible
satellite data. Although IR and visible satellite techniques are indirect methods, i.e., the
raindrops themselves are not directly sensed by IR or visible radiation, studies show there
is a relationship between rainfall rates and cloud brightness and its cloud top temperature.
Lovejoy and Austin (1979) used brightness and temperature observations from IR and
visible data together to estimate precipitation in conjunction with weather radar data.
They found clouds with very cold tops produced the heaviest precipitation. Adler and
Negri (1988) developed a scheme, the Convective-Stratiform Technique (CST), by using
only infrared satellite data to estimate rainfall rate. In their satellite analysis, they located
minima in the IR temperatures that are assumed to be convective elements. By
determining the cloud top temperatures at these minima, rain areas and rainfall rates can
be assigned to the convective elements. This chapter will compare SSM/I rain analyses
with corresponding enhanced IR satellite data to illustrate the evolution of rain patterns

in oceanic rapid cyclones and their relation to cloud IR patterns.

A. GOES INFRARED DATA
The Geostationary Operational Environmental Satellite (GOES) system produces
one-half hour IR satellite imagery. The GOES digital IR imagery have 8-bit radiometric

resolution (Clark et al 1983). To identify the significant cloud features. the contrast




between those features and their background must be increased. This is accomplished by
using enhancement curves.

Numerous enhancement curves have been tested by the Satellite Services Division
of the National Environmental Satellite, Data, and Information Service (NESDIS). The
enhancement curve developed for estimating precipitation is the MB curve. Fig. 20
shows a graph of the MB curve indicating several important ranges of temperatures with
their associated gray shades. Description of the key temperature ranges are found in
Table 2. Segments 4 through 7 are used to analyze convective activity. The IR satellite

imagery compared with the SSM/I rain analyses are enhanced with the MB curve.

B. SSM/ - GOES COMPARISON FOR IOPS 2 AND 4 CYCLONES

Two series of three SSM/I rain analyses from IOP 2 and 4 will be compared with
related GOES IR satellite imagery. The 12/2304, 13/0904, and 13/2258 December 1988
SSM/I passes from IOP 2 and the 3/2333, 4/0932, and 4/2147 January 1989 p;sses from

IOP 4 will provide the rain analyses.

1. 1I0P 2 CYCLONE
The TOP 2 cyclone star‘ed as multiple low centers on 13 December 1988. The
first surface low developed shortly after 13/0000 when the first of two upper-air troughs
moved offshore along the Georgia-South Carolina coast. This initial surface low
deepened modestly for the initial 12 h period. A second and stronger upper-air short
wave trough, with an associated upper-level jet streak. moved offshore from Virginia and

North Carolina about 13/1200 and triggered a second surface low northwest of the first
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Fig. 20 Graphical display of MB Enhancement Curve. [After Clark et al 1983]

surface low. Between 14/0300 and 14/0900, the cyclone central pressures fell by
18mb/6h (Hartnet and Hadlock 1989).
a. 12/2304 December 1988
The initial cyclone that started to develop offshore of South Carolina had
a central pressure of approximately 1010 mb. On the 12/2301 GOES IR imagery (Fig.
21), a large region of low to niddle level clouds extends over the North Atlantic Ocean

with an old frontal system on the eastern edge of the unage. Near the Georgia and South
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Table 2 DESCRIPTION OF MB ENHANCEMENT CURVE. [After Clark et al 1983]

SEGMENT °C TEMPERATURE COMMENTS
NUMBER
B 1 58.8 to0 29.3 Little or no useful data (Black)

2 28.8 10 6.8 Low Level/Sea Surface Difference
3 6.3 to -31.2 Middle level - No Enhancement
4 -32.2to 422 First Level Contour (Medium Gray)
5 -43.2 to -53.2 Second Level Contour (Light Gray)
6 -54.2 to -59.2 Thunderstorm Enhancement (Dark Gray)
7 -60.2 to ~63.2 Thunderstorm Enhancement (Black)
8 -64.2 to -80.2 Overshooting Tops Enhancement (White)
9 -81.2to -110.2 Overshooting Tops Enhancement (White)

Carolina coast is an area of higher level clouds associated with the incipient cyclone. An
elongated zone of enhanced cold cloud tops (colder than -32.2°C) parallels the coastline
from northern Florida to the southem pai: of North Carolina. The coldest cloud top
temperatures (-43.2 to -53.2 °C) are centered in this zone about 32.5N 79W. A second
narrow band of cold cloud tops is located east of southern Florida. Coldest temperatures
in this band range are colder than -65°C indicating thunderstorm activity.

The 12/2304 December 1988 SSM/I rain analysis (See Fig. 17, Chapter
III) shows a broader area of precipitation off the coast of South Carolina. The algorithm
that includes one usable 85 GHz channel (Equation 7) is used on this and all subsequent
rain rate analyses. The 19 and 37 GHz only algorithm (Equation 6) matches the other
approach, but cannot resolve the intensity of the rain rate maxima. A large cell with

maximum rainfall rates of 5-6 mm/h is centered near 21N 78.5W, near the coldest IR
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cloud tops. Two smaller cells with maximum rain intensity of 5-6 mm/h are also
analyzed in this broad precipitation area. The outbreak of this precipitation is correlated
with the start of development of this cyclone. The SSM/I rain rate analvsis also shows
a broken line of prec itation ce''s east of Florida. This line has maximum rainfall rates
of 1112 maim’h that correlates well with the narrew band of cold cloud temperatures

described m the TR magen
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b. 13/0904 December 1988

The second SSM/I pass in IOP 2 occurred 10 h later. The cyclone had
developed into a comma-shaped cloud system as shown in the 13/0901 December GOES
IR imagery (Fig. 22). The central pressure of the cyclone had decreased to approximately
1004 mb (6mb/10h). The comma head is large and ragged with the coldest cloud tops
contoured in an anvil shape near the center. The comma tail is not well organized with
isolated, cold, embedded cells. The coldest temperatures in the comma head and tail
range from -60.2 to -63.2°C.

The SSM/I rain analysis for 13/0904 December 1988 (Fig. 23) shows a
comparable comma shape. A large precipitation comma follows the enhanced IR
imagery. Maximum rainfall rates have increased to over 12 mm/h near the center of tle
comma head. This agrees well with the IR imagery and cloud top temperatures of less
than -60°C. In the comma tail (approximately 28.SN 71W), an area of maximum rainfall
rates greater than 12 mm/h (highest rain rate detected is 21 mm/h) coincides with
additional enhanced IR cells. The realistic synoptic structure of the SSM/I rain analysis
and its strong correlation to the IR cloud top pattemns are further evidence of the success

of this rain rate algorithm.

c. 13/2258 December 1988
The next comparison period showed the first surface low continuing to
move to the east, while a much deeper low was developing east of North Carolina and
Virginia. The central pressure of the second cyclone at 13/2300 was approximately 995

mb. In the 13/2231 December 1988 IR imagery (Fig. 24), the cvclone near the coast is
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Fig. 22 13/0901 December'*l988 GOES Enhanced IR Imagery.
depicted as an oval-shaped area. Enhanced IR data areas extend from 43N to 33N and
from 73W to 67W and inland to the northwest. The coldest temperatures range from
-43.2 to -53.2°C.

The 13/2258 December 1988 SSM/I rain analysis (Fig. 25) captures rain
with the westem part of the first cyclone and the developing second cyclone. The second
cyclone precipitation correlates well with the large shield of cold cloud tops in the IR

imagery. The center of the rain area is located at approximately 37N 7] W with
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manmum rainfall rate greater than 12 mm/h (highest rain rate is 21 mm/hy.  The
enhanced IR does not indicate colder cloud tops with these embedded. high rainfali rates.
The extension to the northwest contains a zone withh SSM/T rainfall rates of 9-10 mm/h.
The IR cloud top temperatures in this area ran;e from -22.2 to 42.2°C.  Light

precipitation i1s analyzed by the SSM/T west of the first low in an arca of warmer cloud

tops The rapid development of the intense SSALT precipitation confumes strong vertn al




motions and convection are present in the second cyclone. This system deepened 30 mb

in the next 12 hours. Unfortunately, SSM/I data is not available at that time.

2. 10P 4 CYCLONE
The 10P 4 cyclone may have been the deepest extratropical cyclone to occur
south of 40N in this century (Hartnet and Hadlock 1989). Its central pressure fell to 938
mb on 5/0300 January 1989 with an estimated deepening rate of 24 mb/6h occurring
between 4/0900 and 4/1500. The cyclone appeared to take the form of a trough
containing several low centers as it developed off the coast of North Carolina. When a
strong, upper-air disturbance reached the coastline about 4/0000, the cyclone rapidly

deepened and became a powerful, single center cyclone.

a. 3/2333 January 1989

At this time, the cyclone started to develop off the Carolina coast prior
to its rapid intensification. Its central pressure was approximately 995 mb. The 3/2301
GOES IR imagery (Fig. 26) shows a broad, elongated area of middle to high clouds,
associated with the incipient cyclone, located off the coast of South and North Carolina.
Enhanced cold cloud tops (colder than -32.2°C) extend from 32N to 36N and from 75W
to 63W. A smaller area of cold cloud temperatures is located northwest of this large
convective region near 37N 74W. An earlier storm, that also deepened rapidly, is located
northeast of the IOP 4 cyclone.

The 3/2333 January 1989 SSM/I rain analysis (See Fig. 15, Chapfer an

shows an irregular-shaped area of precipitation. The main precipitation area is over water
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“ig. 26 3/2301 January 1989 GOES Enhanced IR Imagery.

except near the North Carolina coast. The western edge of the SSM/1 rain area is closer
to the coastline than the convective area in the IR imagery. Four distinct cells with
maximum rain rates of 9-10 mm/h are resolved in the SSM/I rain region. The northern
cell coincides with the smaller IR rain area near 37N 74W. The other three rain cells are
not distinguishable in the IR imagery. The SSM/I rain rate data indicates significant

precipitation in the early development stages of this cvclone like TOP 2.

*n
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b. 4/0932 January 1989

Over the next 12h, the cyclone rapidly deepened and developed into a
well-defined comma cloud system. Central pressure dropped to approximately 970 mb,
a 25 mb decrease in 10 hours. The 4/0931 GOES imagery (Fig. 27) shows the comma-
shaped cloud system with an extensive canopy of enhanced cold cloud tops stretching
eastward to about 52W. Slightly southeast of the comma head (39N 64W) are two small
areas of very cold cloud tops (-59.2 to -62.2°C) indicating heavy thunderstorms. The
northernmost edge of the enhanced, cold cloud top is located at 46N. The comma tail
extends southward towards southem Florida with very isolated thunderstorms cells.

The 4/0932 January 1989 SSM/I rain analysis (Fig. 28) only captures the
eastern half of the cyclone due to the limited swath width of the SSM/I instrument. There
is no data available over the western section of the storm since the SSM/I passes are not
contiguous. Rain extends from the comma head to approximately 55W. Three cells of
high rainfall rates are analyzed with maximuin rain rates of greater than 12 mm/h (highest
rain rate detected is 20 mun/h). The cell at 38N 65W and the cell to the south correlate
well with the two areas of coldest cloud tops in the IR imagery. The eastern cell
analyzed by the exponential algorithm is not discemable in the IR imagery. The northem
edge of the cyclone precipitation (40N) does not extend as far north as the enhanced IR

similar to the IOP 5 case. Coastal reports indicate snow in this northem sector.

c. 4/2147 January 1989
The continued development of the cyclone is indicated by the GOES

4/2201 January 1989 imagery (Fig. 29). The comma structure of the cvclone increased
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Fig. 27 4/0931 January 1989 GOES Enhanced IR Imagery.

in size and strong northwesterly flow of cold air to the rear of the storm was evident.
The central pressure was 948 mb, a drop of 22 mb in 13 hours.

The IR cloud imagery shows the comma head wrapping around the low
center positioned at 39N 59W. The northermnmost edge of the convection is near 49N.
The coldest cloud tops (less than -60°C) are found mostly along the comma tail where
scattered thunderstorms are embedded. A small area of very cold cloud tops (-60 to

-63°C) near 44N 52W i< located east of the comma head.

Best Available Copy
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Fig. 28 4/0 +2 January 1989 Exponential Algorithm Rainfall Rate Analysis. Longitude
hines are 107 apart. Western longitude is 60W.

The 32147 Januany 19809 SSM/T rain analvsic (Fig 300 depicts the castem

half of the cvclone The comma tail 1< the predominant feature analvzed  Several cells
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Fig. 29 4/2201 January 1989 GOES Enhce IR Imagery.
along the tail indicate high rain rates with maximum rainfall rates greater than 12 mm/h
(highest rain rate detected is 20 mm/h). The analyzed cell near 41N 52W nearly coincide
with the very cold cloud top area (44N 52W) in the IR imagery. Another high SSM/]
rain rate area centered at 44N S6W is not distinguishable on the IR imagery. A gap in
the IR convective clouds slightly west of the cold cloud top area (44N 52W) is also
depicted in the SSM/1 rain analvsis. An analvzed band of rain paralleling the comma tail

is not clearly shown on the enhanced IR since this area is very close to the edge of the
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IR image.

The sequence of the SSM/I rain analyses in IOP 4 again demonstrates the
synoptic signatures of cyclones enhanced in IR imagery can be analyzed by the SSM/I
rain analyses. The best evidence of this is the well-defined comna tail depicted on the
4/2201 January 1989 IR image that was captured extremely well by the 4/2147 SSM/1
rain analysis.

A third series of SSM/I rain analyses from IOP 3 (not shown) were also
compared with enhanced IR imagery to further study cyclone development. However, it
was impossible to complete the comparison since the SSM/I passes generally did not
capture the rain areas of the cyclone. The cyclone was located in the "missing data" area
between SSM/I passes at the key analysis times. Cataldo (1990) did discuss I0OP 3 passes

as they covered the edges of the cyclone.
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V. SUMMARY AND CONCLUSIONS

The measurement of microwave radiances provides a direct estimate of rain rate.
The SSM/1 on the DMSP satellite provides operational microwave data. This thesis
studied a recently developed SSM/I exponential rain algorithm that used the nonlinear
relationship of rain rate and the rain’s brightness temperature. SSM/I microwave data
from several ERICA cyclones in IOPs 2, 3, 4, and 5 were analyzed by the exponential
rain algorithm. Aircraft radar (IOP S5) and coastal radar (IOPs 2 and 4) data were used
to validate the SSM/I estimated rain analyses produced by the algorithm that included the
usable 85H GHz channel. The 19 and 37 GHz only algorithm was not used since it did
not resolve the intensity of the rain rate maxima. SSM/I rain analyses for IOPs 2, 3, and
4 were compared with corresponding GOES enhanced IR imagery to evaluate further the
rain algorithm’s capability in describing the synoptic rain structure of the cycloncs.

The main purpose of this thesis was to study the SSM/I exponential rain algorithm’s
ability to detect oceanic rain/no rain areas and rain intensity. The SSM/I rain algorithm
produced successful results when the SSM/I rain analyses in IOP 2, 4, and 5 were
compared with aircraft and ground-based radar data. The IOP 5 SSM/I rain analysis
reasonably depicted the general rain structure and rain rate areas of the cyclone when
compared with aircraft radar observations. The rain algorithm performed very well in
locating three distinct maximum rain rate areas observed by the radar. The maximum rain

intensities analyzed by the algorithm are in general agreement with the radar intensit
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observations. However, the SSM/I rain rates are somewhat less than inferred by the radar.
The precipitation associated with the IOP 5 cyclone’s comma shape and its eastward
extension was comectly analyzed. The only disagreement in the aircraft/SSM/I
comparison was an area due south of the aircraft. The location of this rain area was not
consistently analyzed by the aircraft radar. Further study of the radar observations must
be done to explain this discrepancy.

Three SSM/I passes from IOP 2 and one pass from IOP 4 were analyzed and
compared with relevant coastal radar summary charts. The SSM/I rain patterns again
agreed with the radar summaries. Contours of higher level rain intensity (level 3 and
above) correlated with maximum rain rate areas on the SSM/I analyses, but the SSM/1
rain rates are also somewhat less than the coastal radar estimates. The SSM/I rain
patterns generally agreed with the rain contours on the radar summary charts, but the
extent of the SSM/I rain was less. The exponential algorithm also did not analyzed stvrm
area~ where snow was reported.

The exponential rain algorithm was applied to several sequential SSM/I passes in
IOPs 2, 3, and 4. These SSM/I rain analyses were then compared with their respective
GOEFES enhanced IR imagery. The SSM/I rain analyses were able to describe the
syraptic characieristics of each of the cyclones during their development. During the
inc:ient stages of development. the enhanced IR showed a broad, elongated region of
convection. The SSM/I rain analyses depicted irregular, disorganized regions of
precipitation that correlated with the IR imagery. As the cvclones developed. the

expected comma cloud signature appeared on the IR imagery. Very cold cloud tops.
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signifying heavy convection, were located near the comma head and embedded in the
comma tail. The exponential rain algorithm successfully analyzed precipitation patterns
with similar appearance. Most of the coldest cloud top regions coincided with the
maximum rain rates in the SSM/I rain analyses. Isolated SSM/I rain maxima were
analyzed that were not described by the GOES IR imagery.

This study of the SSM/I exponential rain algorithm indicate SSM/I rain rate data
can provide another useful method to study coastal and marine weather systems. The
notable results that the SSM/I rain analyses produced illustrate the improvements
(nonlinear relationship) introduced in the algorithm. However, SSM/I data swaths are not
contiguous and important sectors of the cyclone can be missed by the sensor.

For future study. a comparison of SSM/I rain rate analyses of non-rapidly
developing cyclones with ERICA cases should be undertaken to study the role of
precipitation in rapidly developing cyclone development. Examining in more detail the
microwave brightness temperature/IR cloud top temperature relationship would be
beneficial since SSM/I data is available only twice a day while the GOES IR imagery is
available every thirty minutes. Application of the exponential algorithm on cther storms
would provide additional verification. The SSM/I rain rate data shows promise to
significantly improve analysis of precipitation over the ocean, where conventional data

is notably sparse.
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